L∞-Estimates For Approximated Optimal Control Problems

نویسندگان

  • C. Meyer
  • A. Rösch
چکیده

An optimal control problem for a 2-d elliptic equation is investigated with pointwise control constraints. This paper is concerned with discretization of the control by piecewise linear functions. The state and the adjoint state are discretized by linear finite elements. Approximation of order h in the L-norm is proved in the main result.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

A Numerical Solution of Fractional Optimal Control Problems Using Spectral Method and Hybrid Functions

In this paper‎, ‎a modern method is presented to solve a class of fractional optimal control problems (FOCPs) indirectly‎. ‎First‎, ‎the necessary optimality conditions for the FOCP are obtained in the form of two fractional differential equations (FDEs)‎. ‎Then‎, ‎the unknown functions are approximated by the hybrid functions‎, ‎including Bernoulli polynomials and Block-pulse functions based o...

متن کامل

Error Estimates of Mixed Finite Element Approximations for a Class of Fourth Order Elliptic Control Problems

In this paper, we consider the error estimates of the numerical solutions of a class of fourth order linear-quadratic elliptic optimal control problems by using mixed finite element methods. The state and co-state are approximated by the order k Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise polynomials of order k (k ≥ 1). L and L-error estimate...

متن کامل

Superconvergence Analysis of Finite Element Methods for Optimal Control Problems of the Stationary Bénard Type

In this paper, we consider the finite element approximation of the distributed optimal control problems of the stationary Bénard type under the pointwise control constraint. The states and the co-states are approximated by polynomial functions of lowest-order mixed finite element space or piecewise linear functions and the control is approximated by piecewise constant functions. We give the sup...

متن کامل

L∞-Estimates of Rectangular Mixed Methods for Nonlinear Constrained Optimal Control Problem

In this paper, we investigate the rectangular mixed finite element methods for the quadratic convex optimal control problem governed by nonlinear elliptic equations with pointwise control constraints. The state and the co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive L∞-error estim...

متن کامل

Numerical solution of optimal control problems by using a new second kind Chebyshev wavelet

The main purpose of this paper is to propose a new numerical method for solving the optimal control problems based on state parameterization. Here, the boundary conditions and the performance index are first converted into an algebraic equation or in other words into an optimization problem. In this case, state variables will be approximated by a new hybrid technique based on new second kind Ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004